by Jing-Ru Weng, Ming-Hong Yen, and Chun-Nan Lin*

School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan 807, Republic of China

Four new pterocarpanoids crotafurans A (1), B (2), C (3), and D (4) were isolated from the bark of *Crotalaria pallida* and the seeds of the *C. assamica*, respectively. The structures, including relative configurations were elucidated by spectroscopic data.

1. Introduction. – Various pyrrolizidine alkaloids isolated from *Crotalaria pallida* AIT. and *C. assamica* BENTH. have been reported [1]. In a continued search for bioactive constituents from this plant, three new pterocarpanoids, crotafurans A (1), B (2), and C (3) were isolated from the bark of *C. pallida*, and a new pterocarpanoid, crotafuran D (4), was isolated from the seeds of *C. assamica*. In the present paper, the structure elucidations of the four new pterocarpanoids are reported.

2. Results and Discussion. – The molecular formula of crotafuran A (1) was determined to be $C_{20}H_{16}O_4$ by HR-EI-MS (m/z 320.1048 (M^+)), which was consistent with the ¹H- and ¹³C-NMR data. The IR absorption of 1 implied the presence of OH (3422 cm⁻¹) and aromatic ring (1604 cm⁻¹) moleties. The ¹H- and ¹³C-NMR spectra of 1 (*Table 1*) were assigned by COSY90, HMQC, HMBC, and NOESY experiments and comparison with corresponding reported data [2–4]. Consequently, the structure of crotafuran A (1) was established as 5'-(1-methylethenyl)furo[2',3':9,10]pterocarpan-3-ol (see *Fig. 1*).

In the ¹H-NMR spectrum of **1**, signals at δ 3.66 (*dd*, J = 10.4, 10.4 Hz, 1 H), 3.73 (*ddd*, J = 11.0, 7.2, 4.8 Hz, 1 H), 4.33 (dd, J = 10.4, 4.8 Hz, 1 H), and 5.69 (d, J = 7.2 Hz, 1 H) were assigned to H_{β} -C(6), H_{α} -C(6a), $H_a - C(6)$, and $H_a - C(11a)$ protons of the pterocarpan (=6a,11a-dihydro-6H-benzofuro[3,2-c]benzopyran) moiety, suggesting a *cis* arrangement of $H_a - C(6a)$ and $H_a - C(11a)$ [2]. The ¹³C-NMR signals at δ 40.8, 67.3, and 80.4 were in agreement with the signals assigned to C(6a), C(6), and C(11a) of the pterocarpan moiety [2]. The ¹H- and ¹³C-NMR spectra revealed signals due to a trisubstituted and a tetrasubstituted benzene moiety, a trisubstituted furan moiety [3], as well as an exocyclic methylene, tertiary Me, and phenolic OH group. The position of the trisubstituted benzene moiety (ring A) of 1, *i.e.*, its fusion at C(1a)-C(4a), was established by COSY90, HMQC, and the HMBC correlations H-C(2)/C(1a), H-C(4)/C(4a), H-C(4)/C(1a), $H_{\beta}-C(6)/C(1a)$ C(4a), H-C(11a)/C(4a), H-C(11a)/C(1) (Table 1). Similarly, the fusion of the tetrasubstituted benzene moiety (ring D) at C(7a)-C(10a) was suggested by COSY90, HMQC, and the HMBC correlations H-C(7)/C(7a)C(10a) and H-C(8)/C(7a). The attachment of the methyl and exocyclic methylene groups at C(14) was confirmed by the HMBC correlations Me(16)/C(14), Me(16)/C(15), H-C(15)/C(16), and H-C(15)/C(14). The HMBC correlations H-C(15)/C(13), H-C(12)/C(13), H-C(12)/C(10), H-C(8)/C(10), and H-C(7)/C(10), H-C(8)/C(10), H-C(8)/C(10)/C(10), H-C(8)/C(10)/C(10), H-C(8)/C(10)/C(10), H-C(8)/C(10)/C(10), H-C(8)/C(10)/C(10), H-C(8)/C(10)/C(10), H-C(8)/C(10)/C(10), H-C(8)/C(10)/C(10), H-C(8)/C(10)/C(10)/C(10), H-C(8)/C(10C(9) established the connectivity of the 1-methylethenyl moiety at the trisubstituted furan (ring E) moiety through the C(13)-C(14) bond and the fusion site of the trisubstituted furan (ring E) moiety at C(9)-C(10) of ring D.

The presence of characteristic peaks at m/z 303 ([320 – OH]⁺), 277 ([M – a – 2 H]⁺), and 186 ([M – b + 2 H]⁺) in the EI-MS of **1** (*Fig.* 2) supported the proposed structure. The relative configurations at C(6a) and

	Table 1. 1H- and 13C-NMR D	ta of 1 and 3 in (Cl	$(D_3)_2 CO$. Arbitrary	numbering, see I	Fig. 1; δ in ppm, J	in Hz
--	----------------------------	--------------------------	--------------------------	------------------	----------------------------	-------

	1			3		
	$\delta(H)$	$\delta(C)$	HMBC (¹ H) ^a)	$\delta(H)$	$\delta(C)$	$HMBC (^{1}H)^{a})$
H-C(1)	7.39 $(d, J = 8.4)$	133.1	5.69 (H-C(11a))	7.38 (<i>d</i> , <i>J</i> = 8.4)	133.9	5.49 (H-C(11a))
C(1a)		113.3	6.38 (H–C(4)), 6.58 (H–C(2))		113.8	6.58 (H-C(2))
H-C(2)	6.58 (dd, J = 8.4, 2.4)	110.5	6.38 (H–C(4)), 8.61 (OH–C(3))	6.58 (<i>dd</i> , <i>J</i> = 8.8, 2.4)	111.6	6.32 (H–C(4)), 8.69 (OH–C(3))
HO-C(3)	8.61 (s)	159.8	6.58 (H–C(2)), 7.39 (H–C(1)), 8.61 (OH–C(3))	8.69 (s)	160.5	6.58 (H–C(2)), 7.38 (H–C(1)), 8.69 (OH–C(3))
H-C(4)	6.38 $(d, J = 2.4)$	104.0	6.58 (H–C(2)), 8.61 (OH–C(3))	6.32 (<i>d</i> , <i>J</i> = 2.4)	105.1	6.58 (H–C(2)), 8.69 (OH–C(3))
C(4a)		157.8	3.66 (H_{β} -C(6)), 5.69 (H-C(11a)), 6.38 (H-C(4))		158.1	4.20 (H_{β} -C(6)), 5.49 (H-C(11a)), 6.32 (H-C(4))
$H_{\alpha}-C(6)$	4.33 (<i>dd</i> , <i>J</i> = 10.4, 4.8)	67.3	5.69 (H–C(11a))	4.16 $(d, J = 11.6)$	71.4	
$H_{\beta}-C(6)$	3.66 (<i>dd</i> , <i>J</i> = 10.4, 10.4)			4.20 (<i>d</i> , <i>J</i> = 11.6)		
$H_{\alpha}-C(6a)$	3.73 (<i>ddd</i> , <i>J</i> =11.0, 7.2, 4.8)	40.8	$3.66 (H_{\beta} - C(6))$		78.1	4.20 (H_{β} -C(6))
HO-C(6a)				5.19 (s)		
C(7a)		121.2	7.03 (H-C(8))		124.1	7.10 (H-C(8))
H-C(7)	7.29 (d, J = 8.4)	121.7	7.03 (H-C(8))	7.35 (<i>d</i> , <i>J</i> = 8.4)	121.5	7.10 (H-C(8))
H-C(8)	7.03 $(d, J = 8.4)$	103.8	7.29 (H-C(7))	7.10 (<i>d</i> , <i>J</i> = 8.4)	104.6	7.35 (H-C(7))
C(9)		153.3	7.29 (H-C(7))		154.4	7.35 (H-C(7))
C(10)		114.9	6.74 (H-C(12)), 7.03 (H-C(8))		115.8	6.74 (H-C(12)), 7.10 (H-C(8))
C(10a)		157.6	7.29 (H-C(7))		159.0	
H-C(11a)	5.69 $(d, J = 7.2)$	80.4	3.66 (H_{β} -C(6)), 4.33 (H_{a} -C(6))	5.49 (s)	87.8	4.20 (H_{β} -C(6)), 4.20 (H_{a} -C(6))
H - C(12)	6.74 (s)	100.3		6.74 (s)	101.0	
C(13)		157.2	5.19 (H-C(15)),		157.9	2.11 (Me(16)),
			5.69 (H-C(11a)),			5.18 (H-C(15)),
			6.74 (H-C(12))			5.71(H-C(15)),
						6.74 (H-C(12))
C(14)		133.8	2.11 (Me(16)),		134.5	2.11 (Me(16)),
			5.69 (H-C(11a))			5.71 (H-C(15))
H-C(15)	5.19 (s)	112.6	2.11 (Me(16))	5.18 (s)	114.1	2.11 (Me(16))
H-C(15)	5.71 (s)			5.71(s)		
Me(16)	2.11 <i>(s)</i>	19.3	5.19 (H–C(15)), 5.69 (H–C(11a))	2.11 (s)	19.9	5.18 (H–C(15)), 5.71 (H–C(15))
^a) Only key	interactions.					

C(11a) were established by the NOESY cross-peaks (*Fig.* 2) H_{α} -C(6)/H-C(6a) and H-C(6a)/H-C(11a), while H-C(6a) and H-C(11a) adopted the relative α -configuration. Further experiments are required to elucidate the absolute configuration of **1**.

Fig. 1. Structures of 1-4. Numbering arbitrary.

Fig. 2. Key NOESY interactions of 1 and 2 and EI-MS fragmentation patterns of $1\!-\!4$

The molecular formula of crotafuran B (2) was determined to be $C_{19}H_{14}O_5$ by HR-EI-MS (m/z 322.0848 (M^+)), which was consistent with the ¹H- and ¹³C-NMR data. The IR absorptions of 2 were indicative of OH (3262 cm⁻¹), conjugated CO (1669 cm⁻¹), and aromatic-ring (1626 cm⁻¹) moieties. The UV spectrum and the EI-MS of 2 (*Fig.* 2) resembled that of crotafuran A (1). The ¹H-NMR data of 2 were very similar to those of 1, except for the absence of signals due to the 1-methylethenyl group and the

Table 2. ¹³C-NMR Data of 2 and 4^{a}); Arbitary numbering, see Fig. 1; δ in ppm.

	C(1)	(C(1a)	C(2)	C(3)	C(4)	C(4a)	C(6)	C(6a)	C(7)	C(7a)	C(8)	C(9)	C(10)	C(10a)	C(11a)	C(12)	C(13)	C(14)	C(15)
2 ^b)	133.2	112.4	110.6	159.9	104.0	157.9	67.2	40.8	125.3	121.9	104.6	155.0	113.7	158.2	81.1	110.6	153.4	187.9	26.5
4	134.0	114.7	111.7	160.6	106.0	158.0	71.3	78.1	125.2	124.6	104.6	156.0	113.7	159.7	88.6	111.3	154.3	188.5	27.2
																h.			

^a) The number of protons directly attached to each C-atom was verified by DEPT experiments. ^b) Signals obtained by ¹H,¹H-COSY, HMQC, HMBC, and NOESY techniques and comparison with the corresponding reported data [4][5].

appearance of signals due to an acetyl group. In the ¹³C-NMR spectra of **2** (*Table 2*), the chemical-shift values of C(1) to C(15) were almost identical to corresponding data of **1** (*Table 1*) except for C(7), C(9), C(10), and C(12) to C(15). Based on these results, the acetyl group was located at C(13). The ¹H- and ¹³C-NMR, COSY90, HMQC, HMBC, and NOESY data allowed to assign to crotafuran B (**2**) the structure of 1-(3-hydroxyfuro[2',3':9,10]pterocarpan-5'-yl)ethanone.

The molecular formula of crotafuran C (**3**) was determined to be $C_{20}H_{16}O_5$ by HR-EI-MS (m/z 336.1016 (M^+)), which was consistent with the ¹H- and ¹³C-NMR data. The IR absorptions of **3** were indicative of OH (3416 cm⁻¹), conjugated CO (1625 cm⁻¹), and aromatic ring (1602 cm⁻¹) moleties, and the UV spectrum resembled that of **1**, suggesting a pterocarpanoid structure. The ¹H- and ¹³C-NMR (*Table 1*), COSY90, HMQC, HMBC, and NOESY data confirmed the structure of 5'-(1-methylethenyl)furo[2',3':9,10]pterocarpan-3,6a-diol for crotafuran C (**3**).

The ¹H-NMR spectrum of **3** was similar to that of **1**, except for the lack of signals due to $H_{\beta}-C(6)$, $H_a-C(6a)$,

The molecular formula of crotafuran D (4) was determined to be $C_{19}H_{14}O_6$ by HR-EI-MS (m/z 338.0791 (M^+)), which was consistent with the ¹H- and ¹³C-NMR data. The IR absorptions of 4 were indicative of OH (3417 cm⁻¹), conjugated CO (1660 cm⁻¹), and aromatic ring (1625 cm⁻¹) moleties, and the ¹H-NMR data were very similar to those of crotafuran C (3), except for the absence of signals of the 1-methylethenyl group and the appearance of signals due to an acetyl group. In the ¹³C-NMR spectra of 4 (*Table 2*), the chemical-shift values of C(1) to C(15) were almost identical to corresponding data for 3 (*Table 1*), except for C(7), C(9), C(10), and C(12) to C(15). Based on these results, the acetyl group was located at C(13). The ¹H- and ¹³C-NMR spectra and comparison with those of 3 and with reported data [4] allowed us to assign to crotafuran D (4) the structure of 1-(3,6a-dihydroxyfuro[2',3':9,10]pterocarpan-5'yl)ethanone (4).

Crotafurans A, B, C, and D are the first natural products containing a furan ring fused at the C(9)-C(10) bond of the pterocarpan skeleton.

This work was partly supported by a grant from the *National Science Council of R. O. C.* (NSC 89-2320-B-037-077).

850

Experimental Part

General. M.p.: uncorrected. Optical rotations: Jasco model DIP-370 digital polarimeter. UV Spectra: Jasco UV-VIS spectrophotometer; λ_{max} (log ε) in nm. IR Spectra: Hitachi 260-30 spectrophotometer; $\tilde{\nu}$ in cm⁻¹. ¹H- and ¹³C-NMR Spectra: Varian Unity-400 spectrometer; 400 and 100 MHz, resp.; δ in ppm, J in Hz. MS: JMS HX100 mass spectrometer; m/z (rel. %).

Plant Material. Whole plants of *C. pallida* and the seeds of *C. assamica* were collected at Ping Tung Hsieng, Taiwan, in July 2000. A voucher specimen (2003) has been deposited at the Department of Medicinal Chemistry, School of Pharmacy, Kaohsiung Medical University.

Extraction and Isolation. Pieces of the bark (8 kg) of *C. pallida* were chipped and extracted with MeOH at r.t. The extract (85 g) was subjected to column chromatography (silica gel, C_6H_6 /acetone 2:1): **1** (30 mg), **2** (15 mg), and **3** (10 mg). The seeds (125 g) of *C. assamica* were pressed and extracted with MeOH at r.t. The extract (20 g) was subjected to column chromatography (silica gel, CH₂Cl₂/MeOH 9:1): **4** (5 mg).

 $\begin{aligned} & Crotafuran \ A \ (= 5'-(1-Methylethenyl)furo\ [2',3':9,10] pterocarpan-3-ol = rel-(5bR,11bR)-5b,11b-Dihydro-2-(1-methylethenyl)-6H-furo\ [2',3':6,7] benzofuro\ [3,2-c]\ [1] benzopyran-9-ol; 1): Yellow needles \ (C_6H_{6}/acetone). \\ & [a]_D^{25} = -18 \ (c = 0.16, \ acetone). \ UV \ (MeOH): 245 \ (4.14), 279 \ (4.25), 288 \ (sh, 4.80). \ IR \ (KBr): 3432, 2952, 2360, 1604. \ ^1H-NMR \ ((D_6) acetone, 400 \ MHz; for numbering, see \ Fig. 1): Table \ 1. \ ^{13}C-NMR \ ((D_6) acetone, 100 \ MHz): Table \ 1. \ EI-MS \ (70 \ eV): 320 \ (67, \ M^+), 303 \ (13), 256 \ (2), 211 \ (6), 198 \ (15), 186 \ (23), 147 \ (18), 55 \ (79). \ HR-EI-MS: 320.1048 \ (C_{20}H_{16}O_{4}^+; calc. \ 320.1049). \end{aligned}$

Crotafuran B (=1-(3-Hydroxyfuro[2',3':9,10]pterocarpan-5'-yl)ethanone = rel-1-[(5bR,11bR)-5b,11b-Dihydro-9-hydroxy-6H-furo[2',3':6,7]benzofuro[3,2-c][1]benzopyran-2-yl]ethanone; **2**): Yellow needles ($C_6H_{\phi}/acetone$). [α] $_{D}^{25}$ = -16 (c = 0.14, acetone). UV (MeOH): 237 (3.93), 288 (3.94), 338 (sh, 3.48). IR (KBr): 3262, 2922, 2858, 1669, 1626. ¹H-NMR ((D_6)acetone, 400 MHz; for numbering, see *Fig.* 1): 2.54 (s, Me(16)); 3.73 (d, J = 10.4, 10.4, H_{β} -C(6); 3.83 (ddd, J = 11.0, 7.2, 4.8, H_{α} -C(6a)); 4.36 (dd, J = 10.4, 4.8, H_{α} -C(6)); 5.80 (d, J = 7.2, H-C(11a)); 6.37 (d, J = 2.4, H-C(4)); 6.59 (dd, J = 8.4, 2.4, H-C(2)); 7.15 (d, J = 8.4, H-C(8)); 7.40 (d, J = 8.4, H-C(1)); 7.53 (d, J = 8.4, H-C(7)); 7.63 (s, H-C(12)); 8.64 (s, OH-C(3)). ¹³C-NMR ((D_6)acetone, 100 MHz): *Table* 2. EI-MS (70 eV): 322 (58, M^+), 305 (9), 251 (5), 147 (18), 134 (37), 55 (27). HR-EI-MS: 322.0848 ($C_{19}H_{14}O_5^+$; calc. 322.0841).

Crotafuran C (=5'-(1-Methylethenyl)furo[2',3':9,10]pterocarpan-3,6a-diol = rel-(5bR,11bR)-5b,11b-Dihydro-2-(1-methylethenyl)-6H-furo[2',3':6,7]benzofuro[3,2-c][1]benzopyran-5b,9-diol; **3**): Yellow needles ($C_6H_6/acetone$). [a] $_{D5}^{25} = -20$ (c = 0.11, acetone). UV (MeOH): 275 (4.32), 285 (4.36), 306 (sh, 3.92). IR (KBr): 3146, 1625, 1602. ¹H-NMR ((D_6)acetone, 400 MHz; for numbering, see *Fig. 1*): *Table 1*. ¹³C-NMR ((D_6)acetone, 100 MHz): *Table 1*. EI-MS (70 eV): 336 (17, M^+), 318 (5), 317 (8), 291 (8), 277 (7), 163 (10), 115 (12), 69 (22). HR-EI-MS: 336.1016 ($C_{20}H_{16}O_5^+$; calc. 336.0998).

Crotafuran D (=1-(3,6a-Dihydroxyfuro[2',3':9,10]pterocarpan-5'-yl)ethanone = rel-1-[(5bR,11bR)-5b,11b-Dihydro-5b,9-dihydroxy-6H-furo[2',3':6,7]benzofuro[3,2-c][1]benzopyran-2-yl]ethanone; **4**): White powder (CH₂Cl₂/MeOH). [a]_D³⁵ = -23 (c = 0.16, MeOH). UV (MeOH): 237 (4.24), 287 (4.23), 330 (sh, 3.81). IR (KBr): 3417, 1660, 1625. ¹H-NMR ((D₆)acetone, 400 MHz; for numbering, see *Fig.* 1): 2.55 (*s*, Me(15)); 4.20 (*d*, *J* = 11.6, H_a-C(6)); 4.25 (*d*, *J* = 11.6, H_β-C(6)); 5.27 (*s*, OH-C(6a)); 5.58 (*s*, H-C(11a)); 6.32 (*d*, *J* = 2.4, H-C(4)); 6.60 (*dd*, *J* = 8.4, 2.4, H-C(2)); 7.22 (*d*, *J* = 8.4, H-C(8)); 7.59 (*d*, *J* = 8.4, H-C(7)); 7.64 (*s*, H-C(12)); 8.65 (*s*, OH-C(3)). ¹³C-NMR ((D₆)acetone, 100 MHz): *Table* 2. EI-MS (70 eV): 338 (9, *M*⁺), 320 (1), 319 (2), 293 (5), 257 (5), 236 (5), 97 (45), 69 (66), 57 (83). HR-EI-MS: 338.0791 (C₁₉H₁₄O₆⁺; calc. 338.0790).

REFERENCES

- [1] L. W. Smith, C. C. Culvenor, J. Nat. Prod. 1981, 44, 129.
- [2] L. A. Mitscher, S. R. Gollapudi, D. C. Gerlach, S. D. Drake, E. A. Véliz, J. A. Ward, *Phytochemistry* 1988, 27, 381.
- [3] K. Biemann, 'Spectral Data for Structure Determination of Organic Compounds', Springer-Verlag, Cambridge, MA 02139/USA, 1989, H265.
- [4] A. V. K. Prasad, R. S. Kapil, S. P. Popli, Indian J. Chem., Sect. B 1985, 24, 236.
- [5] W. Lwande, M. D. Bentley, C. Macfoy, F. N. Lugemwa, A. Hassanali, E. Nyandat, Phytochemistry 1987, 26, 2425.
- [6] P. V. Demacro, E. Farkas, D. Doddrell, B. L. Mylari, E. Wenkert, J. Am. Chem. Soc. 1968, 90, 5480.